397 research outputs found

    Inverse Covariance Estimation for High-Dimensional Data in Linear Time and Space: Spectral Methods for Riccati and Sparse Models

    Get PDF
    We propose maximum likelihood estimation for learning Gaussian graphical models with a Gaussian (ell_2^2) prior on the parameters. This is in contrast to the commonly used Laplace (ell_1) prior for encouraging sparseness. We show that our optimization problem leads to a Riccati matrix equation, which has a closed form solution. We propose an efficient algorithm that performs a singular value decomposition of the training data. Our algorithm is O(NT^2)-time and O(NT)-space for N variables and T samples. Our method is tailored to high-dimensional problems (N gg T), in which sparseness promoting methods become intractable. Furthermore, instead of obtaining a single solution for a specific regularization parameter, our algorithm finds the whole solution path. We show that the method has logarithmic sample complexity under the spiked covariance model. We also propose sparsification of the dense solution with provable performance guarantees. We provide techniques for using our learnt models, such as removing unimportant variables, computing likelihoods and conditional distributions. Finally, we show promising results in several gene expressions datasets.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Molding CNNs for text: non-linear, non-consecutive convolutions

    Full text link
    The success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and use low-rank n-gram tensors to directly exploit interactions between words already at the convolution stage. Moreover, we extend the n-gram convolution to non-consecutive words to recognize patterns with intervening words. Through a combination of low-rank tensors, and pattern weighting, we can efficiently evaluate the resulting convolution operation via dynamic programming. We test the resulting architecture on standard sentiment classification and news categorization tasks. Our model achieves state-of-the-art performance both in terms of accuracy and training speed. For instance, we obtain 51.2% accuracy on the fine-grained sentiment classification task
    • …
    corecore